Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(17): 13300-13305, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639135

RESUMEN

Rhenium (Re) shows the richest valence states from +2 to +7 in compounds, but its mixed-valence states are still missing thus far. In this work, we have explored the Re-O phase diagram with a wide range of stoichiometric compositions under high pressure through first-principles structural search calculations. Besides identifying two novel high-pressure phases of ReO2 and ReO3, we reveal two hitherto unknown Re-rich Re3O2 and O-rich ReO4 compounds. Re atoms in Re3O2 show mixed-valence states due to their inequivalent coordination environments, the first example in Re-based compounds. Electronic structure calculations demonstrate that the four discovered Re-O phases exhibit metallicity contributed by Re 5d electrons. Among them, ReO3 has a predicted critical temperature of up to 12 K at 50 GPa, derived from the interaction between Re 5d electrons and Re-derived low-frequency phonons. Our study points to new opportunities to disclose novel transition metal compounds with mixed-valence states.

2.
Inorg Chem ; 63(18): 8257-8263, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38662198

RESUMEN

For hydride superconductors, each significant advance is built upon the discovery of novel H-based structural units, which in turn push the understanding of the superconducting mechanism to new heights. Based on first-principles calculations, we propose a metastable LiH4 with a wavy H layer composed of the edge-sharing pea-like H18 rings at high pressures. Unexpectedly, it exhibits pressure-insensitive superconductivity manifested by an extremely small pressure coefficient (dTc/dP) of 0.04 K/GPa. This feature is attributed to the slightly weakened electron-phonon coupling with pressure, caused by the reduced charge transfer from Li atoms to wavy H layers, significantly suppressing the substantial increase in the contribution of phonons to Tc. Its superconductivity originates from the strong coupling between the H 1s electrons and the high-frequency phonons associated with the H layer. Our study extends the list of H-based structural units and enhances the in-depth understanding of pressure-related superconductivity.

3.
Elife ; 122024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446535

RESUMEN

Cognitive control resolves conflicts between task-relevant and -irrelevant information to enable goal-directed behavior. As conflicts can arise from different sources (e.g., sensory input, internal representations), how a limited set of cognitive control processes can effectively address diverse conflicts remains a major challenge. Based on the cognitive space theory, different conflicts can be parameterized and represented as distinct points in a (low-dimensional) cognitive space, which can then be resolved by a limited set of cognitive control processes working along the dimensions. It leads to a hypothesis that conflicts similar in their sources are also represented similarly in the cognitive space. We designed a task with five types of conflicts that could be conceptually parameterized. Both human performance and fMRI activity patterns in the right dorsolateral prefrontal cortex support that different types of conflicts are organized based on their similarity, thus suggesting cognitive space as a principle for representing conflicts.


You are reading a book in your local coffeeshop, when your focus gets broken by the couple at the next table, passionately discussing mortgage rates. To minimise this interruption your brain engages in 'cognitive control', resolving conflicts between competing stimuli to prioritise one over another. Having finally regained your focus, another distraction emerges, this time of a different nature. Does your brain use the same mental mechanisms as before, and therefore a common brain circuit? Or does each kind of stimulus require a specific process? Tasks that involve successively presenting different distractors can help explore these questions by testing for a process known as generalization: if the same mental mechanism underpins the resolution of all conflicts, distractors should become easier to ignore after the first trial. Based on this paradigm, Yang et al. recorded brain activity during a modified version of a spatial Stroop-Simon task. Participants were asked to press a left or right button based on whether an arrow was pointing up or down, with both the vertical and horizontal position of the symbol potentially causing interference. For instance, accurate decision-making may be impaired when an arrow 'down' the bottom of the screen is pointing up (Stroop effect); or when participants must press the left button for an arrow shown on their right (Simon effect). Overall, the arrows could appear in 10 possible locations, giving rise to five types of conflicts with a unique blend of Stroop and Simon effects, with different levels of similarity. The results showed that the degree to which conflicts could generalize to each other depended on their similarity: the more similar the conflicts, the easier it was to resolve one after having faced another. This is contrary to previous views suggesting that different conflict types either entirely generalized or could not generalize at all. In addition, the analyses revealed that the neural networks involved in resolving each conflict type were organised in a continuous manner within a region called the prefrontal cortex. This pattern resembles how spatial information is arranged in the brain, prompting Yang et al. to suggest that cognitive control also falls under a set of principles known as cognitive space representations. Overall, the methodology employed in this work could prove useful to researchers from other fields who also investigate whether various stimuli are processed via the same or different neural networks.


Asunto(s)
Cognición , Corteza Prefontal Dorsolateral , Humanos
4.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517179

RESUMEN

The mechanisms of semantic conflict and response conflict in the Stroop task have mainly been investigated in the visual modality. However, the understanding of these mechanisms in cross-modal modalities remains limited. In this electroencephalography (EEG) study, an audiovisual 2-1 mapping Stroop task was utilized to investigate whether distinct and/or common neural mechanisms underlie cross-modal semantic conflict and response conflict. The response time data showed significant effects on both cross-modal semantic and response conflicts. Interestingly, the magnitude of semantic conflict was found to be smaller in the fast response time bins than in the slow response time bins, whereas no such difference was observed for response conflict. The EEG data demonstrated that cross-modal semantic conflict specifically increased the N450 amplitude. However, cross-modal response conflict specifically enhanced theta band power and theta phase synchronization between the medial frontal cortex (MFC) and lateral prefrontal electrodes as well as between the MFC and motor electrodes. In addition, both cross-modal semantic conflict and response conflict led to a decrease in P3 amplitude. Taken together, these findings provide cross-modal evidence for domain-specific mechanism in conflict detection and suggest both domain-specific and domain-general mechanisms exist in conflict resolution.


Asunto(s)
Electroencefalografía , Semántica , Mapeo Encefálico , Lóbulo Frontal/fisiología , Tiempo de Reacción/fisiología
5.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405946

RESUMEN

Practice not only improves task performance, but also changes task execution from rule- to memory-based processing by incorporating experiences from practice. We tested the hypothesis that strategy transition in task learning results from a cost-benefit analysis of candidate strategies. Participants learned two task sequences and were then queried the task type at a cued sequence and position. Behavioral improvement with practice can be accounted for by a computational model implementing cost-benefit analysis. Model-guided fMRI analysis shows frontal and parietal activations scaling with the demand of executing rule and memory strategy, respectively. fMRI activation pattern analysis further reveals widespread strategy-specific neural representations when their corresponding strategy is executed. Lastly, strategy transition is related to neural representation change in the dorsolateral prefrontal cortex and pattern separation in the ventromedial prefrontal cortex and the hippocampus. These findings shed light on how practice optimizes task performance by shifting task representations at the strategy level.

6.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212286

RESUMEN

Interference from task-irrelevant stimuli can occur during the semantic and response processing stages. Previous studies have shown both common and distinct mechanisms underlying semantic conflict processing and response conflict processing in the visual domain. However, it remains unclear whether common and/or distinct mechanisms are involved in semantic conflict processing and response conflict processing in the cross-modal domain. Therefore, the present electroencephalography study adopted an audiovisual 2-1 mapping Stroop task to investigate whether common and/or distinct mechanisms underlie semantic conflict and response conflict. Behaviorally, significant cross-modal semantic conflict and significant cross-modal response conflict were observed. Electroencephalography results revealed that the frontal N2 amplitude and theta power increased only in the semantic conflict condition, while the parietal N450 amplitude increased only in the response conflict condition. These findings indicated that distinct neural mechanisms were involved in cross-modal semantic conflict and response conflict processing, supporting the domain-specific cognitive control mechanisms from a cross-modal multistage conflict processing perspective.


Asunto(s)
Encéfalo , Semántica , Encéfalo/fisiología , Tiempo de Reacción/fisiología , Electroencefalografía , Test de Stroop
7.
bioRxiv ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37662396

RESUMEN

Cognitive control plays a pivotal role in guiding human goal-directed behavior, and revealing its lifespan trajectory is crucial for optimizing cognitive functioning at different ages, especially for stages of rapid development and decline. While existing studies have shed light on the inverted U-shaped trajectory of cognitive control function both behaviorally and anatomically, little is known about the corresponding changes in functional brain activation with age. To bridge this gap, we conducted a comprehensive meta-analysis of 129 neuroimaging studies using conflict tasks, encompassing 3,388 participants whose age spanned from 5 to 85 years old. We applied the seed-based d mapping (SDM), generalized additive model (GAM) and model comparison approaches to investigate age-related changes of brain activity, chart the lifespan trajectories and pinpoint peaks of cognitive control brain activity. The present study have three major findings: 1) The inverted U-shaped lifespan trajectory is the predominant pattern; 2) Cognitive control related brain regions exhibit heterogeneous lifespan trajectories: the frontoparietal control network (such as the inferior frontal gyrus and inferior parietal lobule) follows inverted U-shaped trajectories, peaking between 24 and 41 years, while the dorsal attention network (such as the frontal eye field and superior parietal lobule) demonstrates flatter trajectories with age; 3) Both the youth and the elderly show weaker brain activities and greater left laterality than young adults. These results collectively reveal the lifespan trajectories of cognitive control, highlighting heterogeneous fluctuations in brain networks with age.

8.
Pflugers Arch ; 476(2): 197-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994929

RESUMEN

Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.


Asunto(s)
Mal de Altura , Edema Encefálico , Disfunción Cognitiva , Humanos , Hipoxia/complicaciones , Mal de Altura/prevención & control , Aclimatación/fisiología , Enfermedad Aguda , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control
9.
J Phys Chem Lett ; 14(49): 11036-11042, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38047885

RESUMEN

One of the most urgent and attractive topics in electrocatalytic water splitting is the exploration of high-performance and low-cost catalysts. Herein, we have proposed three fresh two-dimensional nanostructures (BSi5, BSi4, and BSi3) with inherent metallicity contributed by delocalized π electrons based on first-principles calculations. Their planar atoms arrangement, akin to graphene, is in favor of the availability of active atoms and H adsorption/deadsorption. Among them, the BSi5 monolayer shows the best HER activity, even superior to a commercial Pt catalyst. Moreover, its extraordinary HER activity can be maintained under high H coverage and large biaxial strain, mainly originating from the fact that B 2pz orbital electrons are responsible for the B-H interaction. Further analysis reveals that there appears to be a linear correlation between the magnitude of B 2pz DOS at the Fermi level and Gibbs free energy in both three proposed nanostructures and five hypothetical B-Si nanostructures. Our work represents a significant step forward toward the design of metal-free HER catalysts.

10.
Phys Chem Chem Phys ; 25(47): 32416-32420, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38010895

RESUMEN

Two-dimensional magnetic materials have demonstrated favorable properties (e.g., large spin polarization and net magnetization) for the development of next-generation spintronic devices. The discovery of such materials and insight into their magnetic coupling mechanism has become a research focus. Here, on the basis of first-principles structural search calculations, we have identified a fresh FeCN monolayer consisting of edge-sharing Fe triangle sublattices and FeC3N2 rings, which integrates antiferromagnetism, semiconductivity, and planarity. Interestingly, it possesses a large magnetic anisotropy energy (MAE) of 614 µeV per Fe atom, a narrow band gap (Eg) of 0.47 eV, a large magnetic moment of 3.15 µB, and a proper Néel temperature (TN) of 97 K. The direct exchange between the nearest-neighbor Fe atoms in the triangle sublattice is mainly responsible for the AFM ordering. Its high structural stability, stemming from the collective contribution of covalent C-C and C-N bonds, ionic Fe-N bonds, and metallic Fe-Fe bonds, provides a strong feasibility for experimental synthesis.

11.
BMJ Open ; 13(10): e069390, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907298

RESUMEN

OBJECTIVES: This study examined the association between anthropometric measurements, lifestyle factors and the prevalence of thyroid nodules among adults in Northeast China. DESIGN: We employed a cross-sectional approach involving a questionnaire survey, which focused on participants' living habits, and a physical examination that included anthropometry and ultrasound imaging. SETTING: The data were procured during multiple trips by medical teams from the first hospital of China Medical University to towns in Northeast China. PARTICIPANTS: Of the 1092 participants, 489 did not have thyroid nodules (mean age: 54.02±11.49 years; 297 females (60.7%)), 99 had single thyroid nodules (mean age: 58.19±10.77 years; 59 females (59.6%)) and 504 had multiple thyroid nodules (mean age: 60.05±10.68 years; 394 females (78.2%)). Inclusion criteria mandated participants be over 20 years old without other medical conditions. We excluded individuals who had undergone surgical resection for thyroid nodules. RESULTS: The prevalence of thyroid nodules was significantly associated with being female (OR 2.569, 95% CI 1.937 to 3.405, p<0.001) and increased age (OR 1.054, 95% CI 1.041 to 1.066, p<0.001). This association was more pronounced in those with multiple thyroid nodules. For males under 60, non-smoking was inversely correlated with the prevalence of multiple thyroid nodules (OR 0.321, 95%CI 0.149 to 0.69, p<0.05). For females under 60, diastolic blood pressure (DBP) was significantly linked with the prevalence of thyroid nodules (OR 0.978, 95% CI 2.614 to 2.705, p<0.05). CONCLUSIONS: Besides gender and age, the prevalence of thyroid nodules in Northeast China correlates with smoking habits and DBP.


Asunto(s)
Nódulo Tiroideo , Masculino , Adulto , Humanos , Femenino , Persona de Mediana Edad , Anciano , Adulto Joven , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/epidemiología , Nódulo Tiroideo/etiología , Prevalencia , Factores de Riesgo , Antropometría , China/epidemiología
12.
J Phys Chem Lett ; 14(43): 9698-9704, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37875810

RESUMEN

Borophene has attracted much interest due to its rich configurations and novel properties such as Dirac fermions and superconductivity. The recently emerged bilayer borophene mitigates the oxidation problem when exposed to air, yet most studies ignore the influence of charge transfer induced by metal substrates on structural stability. Here we identified 31 monolayer borophene polymorphs that are stabilized on Au(111), Ag(111), or Cu(111) substrates through first-principle calculations. Interestingly, two novel semiconducting bilayer borophene polymorphs with band gaps of 0.37 and 0.42 eV were screened by integrating these monolayers. The formation of interlayer bonding contributed by the delocalized electrons is responsible for the semiconductivity. The predicted highest electron mobility reaches 2.01 × 104 cm2V-1 s-1, implying the possibility as a semiconductor device with a low power consumption. Moreover, light was also systemically thrown on the factors that may affect the electronic properties of bilayer borophenes and the positional preference of interlayer bonds.

13.
Phys Chem Chem Phys ; 25(43): 29672-29679, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37882360

RESUMEN

The search for intrinsic half-metallic ferromagnetic (FM) monolayers with a high Curie temperature (TC), considerable magnetic anisotropy energy (MAE), and multiferroic coupling is key for the development of ultra-compact spintronics. Here, we have identified a new stable FM Janus monolayer, the tetrahedral CrSSe, through first-principles structural search calculations, which not only exhibits very interesting magnetoelectric properties with a high TC of 790 K, a large MAE of 0.622 meV per Cr, and robust half-metallicity, but also shows obvious ferroelasticity with a modest energy barrier of 0.31 eV per atom. Additionally, there appears to be interesting multiferroic coupling between in-plane magnetization and ferroelasticity. Furthermore, by replacing the Se/S atoms in the CrSSe monolayer with S/Se atoms, we obtained two new half-metallic FM CrS2 and CrSe2 monolayers, which also exhibit excellent magnetoelectric properties. Therefore, our findings provide a pathway to design novel multiferroic materials and enrich the understanding of 2D transition metal chalcogenides.

14.
Phys Chem Chem Phys ; 25(36): 24705-24711, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37668165

RESUMEN

Phosphorus-rich compounds have emerged as a promising class of energy storage and conversion materials due to their interesting structures and electrochemical properties. Herein, we propose that a metallic CrP2 monolayer, isomorphic to 1H-phase MoS2, is a good prospect as an anode for K-ion batteries and a catalyst for hydrogen evolution through first-principles calculations. The CrP2 monolayer demonstrates not only a desirable high K storage capacity (940 mA h g-1) but also a low K-ion diffusion barrier (0.10 eV) and average open circuit voltage (0.40 V). On the other hand, its Gibbs free energy (0.02 eV)/active site density is superior/comparable to that of commercial Pt, resulting from the contribution of the lone pair electrons of the P atom. Its high structural stability and intrinsic metallicity can ensure high safety and performance during the cyclic process. These interesting properties make the CrP2 monolayer a promising multifunctional material for energy storage and conversion devices.

15.
Phys Chem Chem Phys ; 25(35): 23502-23509, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37624051

RESUMEN

Tantalum (Ta) is an interesting transition metal that exhibits superconductivity in its elemental states. Additionally, several Ta chalcogenides (S and Se) have also demonstrated superconducting properties. In this work, we propose the existence of five high-pressure metallic Ta-O compounds (e.g., TaO3, TaO2, TaO, Ta2O, and Ta3O), composed of polyhedra centered on Ta/O atoms. These compounds exhibit distinct characteristics compared to the well-known semiconducting Ta2O5. One particularly interesting finding is that TaO3 shows an estimated superconducting transition temperature (Tc) of 3.87 K at 200 GPa. This superconductivity is primarily driven by the coupling between the low-frequency phonons derived from Ta and the O 2p and Ta 5d electrons. Remarkably, its dynamically stabilized pressure can be as low as 50 GPa, resulting in an enhanced electron-phonon coupling and a higher Tc of up to 9.02 K. When compared to the superconductivity of isomorphic TaX3 (X = O, S, and Se) compounds, the highest Tc in TaO3 is associated with the highest NEF and phonon vibrational frequency. These characteristics arise from the strong electronegativity and small atomic mass of the O atom. Consequently, our findings offer valuable insights into the intrinsic physical mechanisms of high-pressure behaviors in Ta-O compounds.

16.
Phys Chem Chem Phys ; 25(32): 21521-21527, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37545317

RESUMEN

Two-dimensional antiferromagnetic (AFM) materials with an intrinsic semiconductivity, a high critical temperature, and a sizable magnetic anisotropy energy (MAE) have attracted extensive attention because they show promise for high-performance spintronic nanodevices. Here, we have identified a new FeCN2 monolayer with a unique zigzag Fe chain through first-principles swarm structural search calculations. It is an AFM semiconductor with a direct band gap of 2.04 eV, a Néel temperature (TN) of 176 K, and a large in-plane MAE of 0.50 meV per Fe atom. More interestingly, the intrinsic antiferromagnetism, contributed by the strong magnetic coupling of neighbouring Fe ions, can be maintained under the external biaxial strains. A large cohesive energy and high dynamical stability favor synthesis and application. Therefore, these fascinating properties of the FeCN2 monolayer make it a promising nanoscale spintronic material.

17.
Nanoscale ; 15(24): 10430-10436, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37306498

RESUMEN

An icosahedral B12 cage is a basic building block of various boron allotropes, and it also plays a vital role in augmenting the stability of fullerene-like boron nanoclusters. However, the evolution of compact core-shell structures is still a puzzle. Using a genetic algorithm combined with density functional theory calculations, we have performed a global search for the lowest-energy structures of Bn clusters with n = 52-64, which reveals that bilayer and core-shell motifs frequently alternate as the ground state. Their structural stability is assessed, and the competition mechanism between various patterns is also elucidated. More interestingly, an unprecedented icosahedral B12-core half-covered structure is identified at B58, which bridges the gap between the smallest core-shell B4@B42 and the complete core-shell B12@B84 cluster. Our findings provide valuable insights into the bonding pattern and growth behavior of medium-sized boron clusters, which facilitate the experimental synthesis of boron nanostructures.


Asunto(s)
Fulerenos , Nanoestructuras , Boro , Ciclo Celular , Proliferación Celular
18.
Angew Chem Int Ed Engl ; 62(20): e202302363, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36917787

RESUMEN

Due to its outstanding safety and high energy density, all-solid-state lithium-sulfur batteries (ASLSBs) are considered as a potential future energy storage technology. The electrochemical reaction pathway in ASLSBs with inorganic solid-state electrolytes is different from Li-S batteries with liquid electrolytes, but the mechanism remains unclear. By combining operando Raman spectroscopy and ex situ X-ray absorption spectroscopy, we investigated the reaction mechanism of sulfur (S8 ) in ASLSBs. Our results revealed that no Li2 S8, Li2 S6, and Li2 S4 were formed, yet Li2 S2 was detected. Furthermore, first-principles structural calculations were employed to disclose the formation energy of solid state Li2 Sn (1≤n≤8), in which Li2 S2 was a metastable phase, consistent with experimental observations. Meanwhile, partial S8 and Li2 S2 remained at the full lithiation stage, suggesting incomplete reaction due to sluggish reaction kinetics in ASLSBs.

19.
J Phys Chem Lett ; 14(5): 1310-1317, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36724202

RESUMEN

Boron-rich compounds have attracted much attention due to their interesting structures and excellent properties. Here, we performed an extensive study on the different B-P stoichiometries under pressure by combining a particle swarm optimization method with first-principles calculations. At 1 atm, BP and B6P are thermodynamically stable, while other stoichiometries are metastable. Under pressure, BP and B6P remain stable relative to constituent pure solids up to 80 GPa, while other stoichiometries become unstable at relatively low pressures. A new Cmca B6P is predicted with the lowest energy at 1 atm and shows higher shear strain than the R3̅m structure, which is known to be more resistant to brittle fracture than B4C. Moreover, the predicted Pm B8P is a magnetic semiconductor with a magnetic moment of 1 µB. All these boron-rich phosphides are hard materials. The present results enrich the B-P phase diagram and promote extensive research on their excellent properties.

20.
J Phys Chem Lett ; 14(2): 387-394, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36622290

RESUMEN

TeO2 glass has been studied by Raman spectroscopy up to the record pressure of 70 GPa. The boson peak frequency ωb exhibits a decrease of the ∂ωb/∂P slope at 5-6 GPa and saturates above 30 GPa with a practically constant value up to 70 GPa. Experiment and theory indicate that pressures up to 20 GPa induce the transformation of single Te-O-Te bridges to double Te-O2-Te bridges, leading to a more compact structure, while Raman activity developing at higher pressures around 580 cm-1 signals the increase of Te coordination from 4- to 6-fold. Natural bond orbital analysis shows that double Te-O2-Te bridges favor the s → d transition and promote the increase of Te coordination through d2sp3 hybridization. This transition leads to the formation of TeO6 octahedra, in strict difference with crystalline TeO2 at the same pressure range, and to the development of a 3D network that freezes the medium range order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...